Enzymes in the epoxide hydrolase n-terminal phosphatase family contain two structural domains, each with a seperate and independent active site. Only the N-terminal domain is part of the haloacid dehalogenase superfamily. This domain has lipid phosphatase activity, but the biologically relevant substrate has not yet been identified. Mg2+ is required for optimal activity. The C-terminal domain has epoxide hydrolase activity, but is not a part of the haloacid dehalogenase superfamily.
Cronin, A., et al.
The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase
▸ Abstract
The mammalian soluble epoxide hydrolase (sEH) is an enzyme with multiple functions, being implicated in detoxification of xenobiotic epoxides as well as in regulation of physiological processes such as blood pressure. The enzyme is a homodimer, in which each subunit is composed of two domains. The 35-kDa C-terminal domain has an alpha/beta hydrolase fold and harbors the catalytic center for the EH activity. The 25-kDa N-terminal domain has a different alpha/beta fold and belongs to the haloacid dehalogenase superfamily of enzymes. The catalytic properties of the enzyme reported so far can all be explained by the action of the C-terminal domain alone. The function of the N-terminal domain, other than in structural stabilization of the dimer, has therefore remained unclear. By structural comparison of this domain to other haloacid dehalogenase family members, we identified a putative active site containing all necessary components for phosphatase activity. Subsequently, we found rat sEH hydrolyzed 4-nitrophenyl phosphate with a rate constant of 0.8 s(-1) and a K(m) of 0.24 mM. Recombinant human sEH lacking the C-terminal domain also displayed phosphatase activity. Presence of a phosphatase substrate did not affect epoxide turnover nor did epoxides affect dephosphorylation by the intact enzyme, indicating both catalytic sites act independently. The enzyme was unable to hydrolyze 4-nitrophenyl sulfate, suggesting its role in xenobiotic metabolism does not extend beyond phosphates. Thus, we propose this domain participates instead in the regulation of the physiological functions associated with sEH.
Proc Natl Acad Sci U S A
2003;100(4):1552-1557
| PubMed ID:
12574508
Newman JW, Morisseau C, Harris TR, Hammock BD
The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity
▸ Abstract
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-910-phosphonoxy-hydroxy-octadecanoic acid) with K(m) = 21 +/- 0.3 microM, V(Max) = 338 +/- 12 nmol x min(-1) x mg(-1), and k(cat) = 0.35 +/- 0.01 s(-1). Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions.
Proc Natl Acad Sci U S A
2003;100(4):1558-1563
| PubMed ID:
12574510