Enzymes in the deoxy-d-mannose-octulosonate 8-phosphate phosphatase family catalyze the dephosphorylation of 3-deoxy-D-manno-octulosonate 8-phosphate to 3-deoxy-d-manno-octulosonate. The characterized family member from E. coli is active as a tetramer and requires a divalent metal ion as a cofactor.
Parsons, J.F., et al.
From structure to function: YrbI from Haemophilus influenzae (HI1679) is a phosphatase
▸ Abstract
The crystal structure of the YrbI protein from Haemophilus influenzae (HI1679) was determined at a 1.67-A resolution. The function of the protein had not been assigned previously, and it is annotated as hypothetical in sequence databases. The protein exhibits the alpha/beta-hydrolase fold (also termed the Rossmann fold) and resembles most closely the fold of the L-2-haloacid dehalogenase (HAD) superfamily. Following this observation, a detailed sequence analysis revealed remote homology to two members of the HAD superfamily, the P-domain of Ca(2+) ATPase and phosphoserine phosphatase. The 19-kDa chains of HI1679 form a tetramer both in solution and in the crystalline form. The four monomers are arranged in a ring such that four beta-hairpin loops, each inserted after the first beta-strand of the core alpha/beta-fold, form an eight-stranded barrel at the center of the assembly. Four active sites are located at the subunit interfaces. Each active site is occupied by a cobalt ion, a metal used for crystallization. The cobalt is octahedrally coordinated to two aspartate side-chains, a backbone oxygen, and three solvent molecules, indicating that the physiological metal may be magnesium. HI1679 hydrolyzes a number of phosphates, including 6-phosphogluconate and phosphotyrosine, suggesting that it functions as a phosphatase in vivo. The physiological substrate is yet to be identified; however the location of the gene on the yrb operon suggests involvement in sugar metabolism. Copyright 2002 Wiley-Liss, Inc.
Escherichia coli YrbI is 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase
▸ Abstract
3-Deoxy-d-manno-octulosonate 8-phosphate (KDO 8-P) phosphatase, which catalyzes the hydrolysis of KDO 8-P to KDO and inorganic phosphate, is the last enzyme in the KDO biosynthetic pathway for which the gene has not been identified. Wild-type KDO 8-P phosphatase was purified from Escherichia coli B, and the N-terminal amino acid sequence matched a hypothetical protein encoded by the E. coli open reading frame, yrbI. The yrbI gene, which encodes for a protein of 188 amino acids, was cloned, and the gene product was overexpressed in E. coli. The recombinant enzyme is a tetramer and requires a divalent metal cofactor for activity. Optimal enzymatic activity is observed at pH 5.5. The enzyme is highly specific for KDO 8-P with an apparent K(m) of 75 microm and a k(cat) of 175 s(-1) in the presence of 1 mm Mg(2+). Amino acid sequence analysis indicates that KDO 8-P phosphatase is a member of the haloacid dehalogenase hydrolase superfamily.